Imprime PGG modulates the function of monocyte-derived M2 macrophages and dendritic cells to drive T cell expansion
Anissa SH. Chan, Xiaohong Qiu, Adria Bykowski Jonas, Takashi O. Kangas, Nadine R. Otthson, and Nandila Bose
Biothera, Eagan, MN, USA

Abstract LB-225

Summary

Imprime PGG modulates the function of monocyte-derived M2 macrophages and dendritic cells to drive T cell expansion. These results demonstrate the potential of Imprime PGG as an immunomodulatory agent in cancer immunotherapy.

Key findings:

1. Imprime PGG modulates the function of monocyte-derived M2 macrophages and dendritic cells to drive T cell expansion.
2. These results demonstrate the potential of Imprime PGG as an immunomodulatory agent in cancer immunotherapy.

Materials and Methods:

Imprime PGG was administered to monocytes in vitro and in vivo to investigate its effects on macrophage and dendritic cell function.

Experimental Design

Imprime PGG modulates the function of monocyte-derived M2 macrophages and dendritic cells to drive T cell expansion.

Results

1. Imprime PGG modulates the function of monocyte-derived M2 macrophages and dendritic cells to drive T cell expansion.
2. These results demonstrate the potential of Imprime PGG as an immunomodulatory agent in cancer immunotherapy.

Acknowledgements

This work was supported by Biothera, Inc.

References

7. All experiments funded by Biothera, Inc. No external funding was received to support the work.

The immune health company