ABSTRACT

Imprime PGG® is a soluble pharmaceutical-grade yeast-derived 1,3/1,6 β-glucan being developed for the treatment of cancer in conjunction with anti-tumor monoclonal antibodies (MAbs). Numerous pre-clinical studies in vivo have demonstrated that Imprime PGG redirects innate immune cells, to kill antibody-targeted tumor cells through a complement receptor 3-dependent cellular cytotoxicity (CR3-DCC) mechanism, thereby enhancing anti-tumor and long-term survival effects. Mechanistic studies of the combination therapy in mice have shown that for CR3-DCC to occur, Imprime PGG must be capable of inducing the classical pathway of complement activation and opsonization of tumor cells with IgG, and complement receptor 2 (CR2) on B cells is required for complement activation. Mechanistic studies so far have demonstrated that Imprime PGG-induced antitumor activity in mice requires, at least in part:

- Complement protein C3
- Complement receptor 3 (CR3)
- Complement receptor 2 (CR2) on B cells
- Complement receptor 2 (CR2) on neutrophils

BACKGROUND

Imprime PGG, a yeast-derived pharmaceutical-grade soluble 1,3/1,6 β-glucan is being developed for the treatment of cancer in conjunction with anti-tumor MAbs.

- **To-date,** Imprime PGG has been used in 8 trials enrolling >500 subjects. Current clinical development continues in multiple Phase non-small cell lung cancer trials and a Phase 3 colorectal cancer trial.
- **β-glucans** are conserved microbial structures found in the cell wall of unicellular and multicellular pathogens. They are considered pathogen-associated molecular patterns (PAMPs) recognized by the innate immune systems.
- **Yeast-derived β-glucans** have a linear 1,3-β-linked glucan backbone and side-chains, with each side-chain occurring at 1,6 glucan links (Figure 1).

OBJECTIVES

- **Evaluate the role of complement activation pathways in binding of Imprime PGG**
- **Antibody-dependent classical pathway (CP)**
- **Manose-binding lectin (MBL) proteins-dependent lectin pathway (LP)**
- **Alternative pathway (AP)**

EXPERIMENTAL APPROACH AND DESIGN

- Non-specifically block the complement activation pathways in human whole blood (WB) by ECTA or ECTA
- ECTA chelates both calcium and magnesium ions blocking CP, LP, and AP
- Mg/EGTA allows optimal complement activation by the AP while inhibiting calcium sensitive CP or LP
- Specifically inhibit the CP, LP, or the AP by blocking MAbs
- Anti-C3 MAbs to block CP
- Anti-MBL MAbs to block LP
- Anti-Factor D MAbs to block AP
- Further confirmation of the role of specific complement activation pathway
 - Effect of C1q-depleted serum on binding
 - Effect of C1q replenishment in the serum on binding

RESULTS

IN VITRO STUDIES IN HUMAN

In vitro mechanistic studies so far have demonstrated that Imprime PGG by human immune cells, requires at least in part:

- Complement protein C3
- Complement receptor 3 (CR3)
- Innate immune cells

IN VIVO MECHANISTIC STUDIES IN MICE

In vivo mechanistic studies so far have demonstrated that Imprime PGG-induced antitumor activity in mice requires, at least in part:

- Complement protein C3
- Complement receptor 3 (CR3)
- Innate immune cells

SUMMARY

- Activation of the classical pathway by naturally occurring anti-β-glucan antibodies is critical for complement opsonization and binding of Imprime PGG in both CR3 and CR2 receptors on human immune cells in vitro.
- The alternative pathway has minimal involvement in complement opsonization and binding of Imprime PGG.
- The lectin pathway is not required for opsonization and binding of Imprime PGG.