Imprime PGG, a soluble yeast β-1,3/1,6 glucan, is being clinically evaluated in combination with tumor-reactive antibodies, antitumoral agents, and cytotoxic chemotherapy in various tumor indications. Preclinical studies have demonstrated that Imprime's immune-modulatory effects on myeloid cells create an immunostimulatory microenvironment that can affect tumor growth and survival. These effects are mediated through a combination of direct effects on myeloid cells and indirect effects on tumor cells. Imprime, in combination with anti-PD-1 antibody therapy, has been shown to improve the overall survival of mice with advanced melanoma or triple-negative breast cancer (TNBC). These findings suggest that Imprime may have potential as an immunostimulatory agent for use in combination with other immunotherapies.

Background

Imprime PGG (Imprime), an IV administered soluble yeast β-1,3/1,6 glucan is being evaluated for its ability to modulate the immune system. Imprime has been shown to induce the expression of markers of antigen-presentation on myeloid cells and to repolarize the tumor microenvironment. These effects are mediated through a combination of direct effects on myeloid cells and indirect effects on tumor cells. Imprime, in combination with anti-PD-1 antibody therapy, has been shown to improve the overall survival of mice with advanced melanoma or triple-negative breast cancer (TNBC).

Methods

Imprime was tested in combination with a PD-1 mAb in mice with advanced melanoma or TNBC. The treatment regimen included Imprime (2 mg/kg, i.p) and anti-PD-1 mAb (20 mg/kg, i.p) administered on alternate days. The effects of Imprime on the tumor microenvironment and infiltration and activation of immune cells were assessed in preclinical and clinical studies.

Results

Imprime synergizes with anti-PD-1 antibody therapy in the murine MC38 tumor model. When tumors were >3 mm in diameter, mice were treated with Imprime (2 mg/kg), anti-PD-1 mAb (20 mg/kg), or a combination of the two. The results showed that the combination therapy resulted in a greater than additive antitumor effect, with complete tumor regression observed in some mice. In clinical samples, higher frequency of monocytes and enhanced expression of CD11b+ cells were observed in the periphery with Imprime/PD-1 therapy. Compared to pre-treatment levels, greater than either agent alone. Macrophages evaluated from Imprime-treated tumors were shown to exhibit immunostimulatory effects, with Imprime's M1-polarization effects evaluated by RNA expression and flow cytometric analyses.

Conclusions

Imprime PGG, a soluble yeast β-1,3/1,6 glucan, exhibits immunostimulatory effects in preclinical and clinical studies. These effects are mediated through a combination of direct effects on myeloid cells and indirect effects on tumor cells. Imprime, in combination with anti-PD-1 antibody therapy, has been shown to improve the overall survival of mice with advanced melanoma or triple-negative breast cancer (TNBC). These findings suggest that Imprime may have potential as an immunostimulatory agent for use in combination with other immunotherapies.