Abstract

Background: Though efficacious, checkpoint inhibitor (CPI) monotherapy fails to elicit response in the majority of patients. TNBC is one such cancer type where CPI antibodies (pembrolizumab, avelumab, atezolizumab) have demonstrated only a ~5-10% response rate, irrespective of PD-L1 expression. We are developing Imprime PGG (Imprime), a novel yeast derived β-glucan PAMP in combination with pembrolizumab, to enhance the benefit that TNBC patients derive from CPI-based therapy.

Methods: In this analysis, we present the serum and cellular IPD responses elicited by Imprime and pembrolizumab in the peripheral blood of 12 TNBC subjects who previously failed front-line chemotherapy, enrolled as part of a Phase 2 study (NCT02981305). Subjects received Imprime (4 mg/kg qw) + pembrolizumab IV (200 mg qw) in 3 week cycles. Anti-beta glucan antibodies (ABA), circulating immune complexes (CIC), complement activation, cytokine production, gene expression changes, and phenotypic changes on immune cells were evaluated.

Results: As Imprime is known to complex with serum IgG ABA, a drop in the free ABA levels and a concomitant increase in the CIC was observed at the end of infusion (EOI) of every Imprime dose. Interestingly, 11 of 12 subjects showed increased ABA levels between cycles 1 and 2, with peak levels increasing ~1.5 to ~35 fold over baseline. In line with this ABA increase, peak levels in serum CIC levels (range ~3 to 22-fold) and complement protein SC5b-9 (~1.4 to 41-fold) were also observed at cycle 2 EOI. In a subset of patients, a maximum increase of ~30,000-fold in several chemokines was detected at cycle 2 EOI. Gene expression analyses of whole blood indicated peak activation of several genes at cycle 2 associated with activation of innate immune cells and T-cells. In 8 of 12 subjects, an increased frequency up to 11-fold in the CD16+ monocytes, cells known for their enhanced cytotoxicity as well as M1-polarizing functions, was observed between cycles 1 and 2. We also observed an increase, up to 2-fold, in CD16+ inflammatory DC in 8 of 12 subjects. The maximal increase (~4 to 20-fold) in newly proliferating (Ki67+/-), activated CD8 T cells (PD-1+ CD38+ HLA-DR+) was observed at cycle 2 in 4 subjects. Of all these immunological responses, robust cytokine production together with an increased frequency of activated CD8 T cells, correspond with objective tumor responses.

Conclusions: These data provide the first evidence in cancer patients that Imprime can drive the critical IPD changes known to be associated with efficacy in preclinical cancer models.

Results

Evidence of Imprime-ABA Immune Complex Formation In Vivo

Peripheral Immunological Responses Associated with Clinical Response

Summary

- For the first time, this study provides evidence for Imprime-ABA immune complex formation and the downstream peripheral innate and adaptive immune activation responses in cancer subjects.
- For the first time in TNBC patients, treatment with Imprime (in combination with Pembrolizumab) elicits peripheral innate immune-activating immunopharmacodynamic changes including complement activity, select chemokine production, and phenotypic activation of monocytes and DC. These activities have been previously evident in pre-clinical efficacy models as well as healthy volunteers.
- The strong association between the clinical responses and the innate/adaptive immune responses are suggestive of interplay between the therapeutic mechanisms of Imprime and pembrolizumab.

Acknowledgements

All experiments funded by Biothera Pharmaceuticals Inc. No external funding was received to support the work.